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Abstract

This paper studies the coupled dynamics of two cantilevered flexible plates aligned parallel to each other in axial flow.

The nonlinear governing equation of the two-dimensional plate is developed using the inextensibility condition; and an

unsteady lumped vortex model, taking into account the interactions between the two plates, is used to calculate the

pressure difference across each plate. The analysis of the system dynamics is carried out in the time-domain; both the

instability and the post-critical behaviour are investigated. It is found that the system loses stability through flutter when

the flow velocity is sufficiently high, and the flutter threshold is a function of the separation between the two plates. It is

also found that the two plates may oscillate both in the out-of-phase and in-phase modes; the former always has a lower

critical point than the latter. Moreover, flutter of the two-plate system in the in-phase mode is proved to be associated with

an unstable branch of the solution, which can be obtained through numerical simulations with the aid of so-called virtual

spring connections.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of a single two-dimensional cantilevered thin flexible plate in axial flow and variants of this
fluid–structure system has been reviewed extensively by Tang [1], Tang and Paı̈doussis [2,3], and Tang et al.
[4]. The system may lose stability at sufficiently high flow velocity. Once the critical point is exceeded, flutter
takes place, and the amplitude of the symmetrical limit cycle oscillations grows as the flow velocity increases
further. This paper studies the coupled dynamics of two cantilevered flexible plates aligned parallel to each
other in axial flow, which can be regarded as a new variant of the one-plate system investigated before.

Rectangular parallel-plate assemblies are used as core elements of nuclear reactors, and the hydroelastic
instability of this system has recently been studied by Guo and Paı̈doussis [5]. In their work, the plates
are assumed to be clamped along the side-wall, while the inlet and outlet edges are free; the fluid flows inside
the channels formed by the parallel-plate assembly and the side-walls. In the analysis of the parallel-plate
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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assemblies, it is normally a priori assumed, as supported by experimental observations, that all plates have the
same deflection and modal shape at any time, but two adjacent plates deflect in opposite directions; that is, the
divergence or flutter of the plates are supposed to be in the out-of-phase mode. Zhang et al. [6] examined
experimentally the coupled states of two clamped filaments in a flowing soap film for studying one-
dimensional flags (i.e., flexible plates) in two-dimensional wind. Flutter in both the in-phase and out-of-phase
modes are observed, and the oscillation modes are found to be dependent on the separation between the two
filaments: at a fixed, sufficiently high flow velocity, the two filaments oscillate in phase when the separation is
small, but out of phase as the separation is increased. Some of the experimental observations made by Zhang
et al. [6] have preliminarily been confirmed by the theoretical work of Farnell et al. [7], who use a
Navier–Stokes solver for the aero/hydro-dynamics and model each flexible plate as a so-called N-tuple

pendulum for two two-dimensional cantilevered flexible plates in axial channel flow (the fluid domain is
confined by the upper/lower channel walls).

In this paper, the dynamics of cantilevered flexible plates in axial open flow, instead of channel flow, is
studied, unlike the work by Zhang et al. [6] and Farnell et al. [7]. The two-dimensional plate is modelled as a
beam with an inextensible centreline, and an unsteady lumped vortex model, taking into account the
interactions between the two plates, is used to calculate the pressure difference across each plate. The analysis
is carried out in the time-domain, and both the instability and post-critical behaviour of the two-plate system
are investigated. It is found that the two plates can oscillate in both the in-phase and out-of-phase modes.
However, only the oscillations in the out-of-phase mode are stable; they can naturally be obtained through
numerical simulations based on the original model. In order to obtain in-phase oscillations, a new technique
called the virtual-spring-connection method is adopted.

It should be mentioned that the current research has not only originated from theoretical curiosity but is
also related to the design of a new type energy-harvesting device [1], i.e., the ‘‘flutter-mill’’, where two or more
cantilevered flexible plates aligned parallel to each other in axial flow may be considered.
2. The aero/hydro-elastic model

2.1. One-plate system

A schematic diagram of a single cantilevered flexible plate in open axial flow is shown in Fig. 1. The
geometrical characteristics of the rectangular homogeneous plate are the length of the flexible section L, width
B and thickness h; B!1 and h5L for a two-dimensional thin plate. Normally, there is a rigid segment of
length L0 as part of the clamping arrangement at the upstream end. The other physical parameters of the

system are: the plate material density rP and bending stiffness D ¼ Eh3=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� n2Þ

p
, where E and n are,

respectively, Young’s modulus and the Poisson ratio of the plate material, the fluid density rF , and the
undisturbed flow velocity U . As shown in Fig. 1, W and V are, respectively, the transverse and longitudinal
displacements of the plate; FL and F D are, respectively, the aero/hydro-dynamic loads acting on the plate in
the transverse and longitudinal directions, respectively; and S is the distance of a material point on the plate
from the origin, measured along the plate centreline in a coordinate system embedded in the plate. Moreover,
material damping of the Kelvin–Voigt type is considered with the loss coefficient denoted by a.
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Fig. 1. A single cantilevered flexible plate in open axial flow.
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The equations of motion of the plate can be written in nondimensional form as [2]

€wþ 1þ a
q
qt

� �
½w0000ð1þ w02Þ þ 4w0w00w000 þ w003� þ w0

Z s

0

ð _w02 þ w0 €w0Þds� w00
Z 1

s

Z s

0

ð _w02 þ w0 €w0Þds

� �
ds ¼ f eff ,

(1)

v ¼ �
1

2

Z s

0

w02 ds, (2)

f eff ¼ mU2
R f L � w0f D þ w00

Z 1

s

f D ds

� �
, (3)

where the overdot and the prime represent qð Þ=qt and qð Þ=qs, respectively. The nondimensional variables are
defined by

x ¼
X

L
; y ¼

Y

L
; w ¼

W

L
; v ¼

V

L
; s ¼

S

L
; l0 ¼

L0

L
,

t ¼
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rPhL4=D

q ; a ¼
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rPhL4=D

q ; f %
¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rPhL4=D

q
,

f L ¼
F L

rF U2
; f D ¼

F D

rF U2
, (4)

where f % and f are, respectively, nondimensional and dimensional oscillation frequencies. Moreover, the mass
ratio m and the reduced flow velocity UR are, respectively, defined by

m ¼
rF L

rPh
; UR ¼ UL

ffiffiffiffiffiffiffiffi
rPh

D

r
. (5)

In Eq. (3), the aero/hydro-dynamic loads are calculated using the unsteady lumped vortex model [2].
In particular, the flexible plate is evenly divided into N panels, each of length Ds ¼ 1=N. Individual panels
are put on the deformed contour of the plate centreline. The bound vortices, g1 through gN , together with the
instantaneously formed wake vortex gNþ1 at a given instant, say time step k þ 1, are obtained from the
following equations:

a11 a12 � � � a1N a1;Nþ1
a21 a22 � � � a2N a2;Nþ1

..

. ..
. . .

. ..
. ..

.

aN1 aN2 � � � aNN aN;Nþ1

1 1 � � � 1 1

2
66666664

3
77777775

g1
g2

..

.

gN

gNþ1

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

rhs1

rhs2

..

.

rhsN

g%

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
, (6)

where the influence coefficients aij and the right-hand side frhsi; g%gT are given by

aij ¼
ðyC i � yV jÞ sin ai þ ð�xC i þ xV jÞ cos ai

2p½ðyCi � yV jÞ
2
þ ðxCi � xV jÞ

2
�

, (7)

rhsi ¼
_vi

UR

� 1� vW i

� �
sin ai þ

_wi

UR

� wW i

� �
cos ai, (8)

g%kþ1
¼
XN

i¼1

gk
i . (9)

In Eq. (6), gi;i¼1;2;...;N and gNþ1 are, respectively, the strengths of the bound vortices Gi;i¼1;2;...;N and the latest
wake vortex GW 1 normalized by UL. In Eqs. (7) and (8), ðx; yÞC i and ðx; yÞV i are, respectively, the coordinates
of the bound vortex and the collocation point on the ith panel ðX ;Y ÞC i and ðX ;Y ÞV i normalized by L; ðv;wÞW i
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is the wake-induced velocity at the ith collocation point ðV ;W ÞW i normalized by the undisturbed flow velocity U .
In Eq. (9), the superscript k þ 1 represents the current time step; it has been dropped for clarity in
Eqs. (6)–(8).

The truncated wake street is assumed to have a normalized longitudinal length lW ðlW ¼ LW=LÞ, and the
total number of wake vortices NW can be determined by NW ¼ lW=ðURDtÞ. Thus, the wake-induced velocity
at the ith collocation point is calculated by

ðv;wÞW i
¼
XNW

j¼1

gW j

2p

ðyCi � yW j ;�xCi þ xW jÞ

ðyC i � yW jÞ
2
þ ðxCi � xW jÞ

2
, (10)

where gW i and ðx; yÞW j are, respectively, the strength and coordinates of the jth wake vortex GW j normalized
by UL and ðX ;Y ÞW j by L.

When discrete vortices g1 through gNþ1 are available at the current time step, Dpi, the pressure difference at
the ith panel (DPi normalized by rF U2), can be calculated by the following expression [8]:

Dpi ¼ �
_vi

UR

þ 1þ vW i

� �
cos ai þ

_wi

UR

� wW i

� �
sin ai

� �
gi

Ds
þ

1

UR

q
qt

Xi

j¼1

gj

 !
. (11)

Consequently, the distributions of the lift f Li and the drag f Di over the ith panel are obtained by

f Li
¼ Dpi cos ai; f Di ¼ Dpi sin ai þ CD, (12)

where ai is the incidence angle of the ith panel. An additional drag coefficient CD, assumed to be uniformly
distributed over the whole length of the plate, may be considered in f D to account for the viscous effects of the
fluid flow.

2.2. Two-plate system: the original model

When there are two identical cantilevered flexible plates aligned parallel two each other, as shown in Fig. 2
in open axial flow, it is assumed that the two plates originally lie along the X 1 and X 2 axes, respectively; the
distance between X 1 and X 2 is DP, or dP when normalized using L. The fixed X2Y coordinate system is based
on the first plate, coinciding with the X 12Y 1 system. Therefore, the two plates have the same equations of
motion, namely Eqs. (1) and (2), except that the transverse displacements of the second plate w2ðsÞ include a
fixed constant part, dP.

The system involving multiple cantilevered flexible plates in axial flow may be categorized as a blade–blade
interaction problem [9], which is concerned with the interactions of multiple airfoils/wings in either the
aligned-in-parallel configuration or the tandem configuration. Jones and Platzer [10] solved the two-airfoil-
in-tandem problem without considering the impingement of the vortices shed from the upstream airfoil upon
the downstream one. Improved schemes were developed by Jones and Platzer [11] and Yao and Liu [9] to
prevent any moving vortex from penetrating into the body of the (downstream) finite-thickness airfoil.
However, in the current problem of two thin plates (of sensibly ‘‘zero’’ thickness) aligned parallel to each other
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Fig. 2. Two identical cantilevered flexible plates aligned parallel to each other in axial flow.
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in axial flow, it is not necessary to consider such vortex impingement because the vortices shed from the
trailing edge of either plate never approach the other one.

As for the aero/hydro-dynamics part of the two-plate system, following the scheme utilized by Yao and Liu
[9], the bound vortices and the latest wake vortices of both plates are simultaneously solved, while satisfying
the Kutta–Joukowski condition and Kelvin’s theorem for either plate, from

A1;1 A1;2

A2;1 A2;2

" #
V1

V2

( )
¼

R1

R2

( )
, (13)

where Am;n
ðm ¼ 1; 2; n ¼ 1; 2Þ is the matrix of influence coefficients of plate n on plate m, which is defined by

(refer to Eq. (6))

Am;n
¼

am1;n1 am1;n2 . . . am1;nN
am1;nNþ1

am2;n1 am2;n2 . . . am2;nN
am2;nNþ1

..

. ..
. . .

. ..
. ..

.

amN ;n1 amN ;n2 . . . amN ;nN
amN ;nNþ1

dm;n dm;n � � � dm;n dm;n

2
66666664

3
77777775
. (14)

In Eq. (14), dm;n is the Dirac delta function, and ami ;nj
is calculated by

ami ;nj
¼
ðyC

m
i � yV

n
j Þ sin a

m
i þ ð�xC

m
i þ xV

n
j Þ cos a

m
i

2p½ðyC
m
i � yV

n
j Þ

2
þ ðxC

m
i � xV

n
j Þ

2
�

. (15)

In Eq. (13),Vm ðm ¼ 1; 2Þ is the vector consisting of the bound vortices gm
i ði ¼ 1; 2; . . . ;NÞ and the latest wake

vortex gm
Nþ1 of plate m, and Rm is the right-hand-side vector of plate m; they are, respectively, defined by

Vm ¼ fgm
1 ; g

m
2 ; . . . ; g

m
N ; g

m
Nþ1g

T, (16)

Rm ¼ frhsm
1 ; rhs

m
2 ; . . . ; rhs

m
N ; g

%m
gT, (17)

where

rhsm
i ¼

_vm
i

UR

� 1� vW
m
i

� �
sin am

i þ
_wm

i

UR

� wW
m
i

� �
cos am

i , (18)

g%m;kþ1
¼
XN

i¼1

gm;k
i . (19)

In Eq. (18), ðv;wÞW m
i is the wake-induced flow velocity at the ith collocation point of plate m, which should be

calculated by

ðv;wÞmW i
¼
X2
n¼1

XNW

j¼1

gW
n
j

2p

ðyC
m
i � yW

n
j ;�xC

m
i þ xW

n
j Þ

ðyC
m
i � yW

n
j Þ

2
þ ðxC

m
i � xW

n
j Þ

2
, (20)

that is, the wakes of both plates should be considered in the calculation of the wake-induced flow velocity
ðv;wÞW m

i .
When the distribution of the discrete vortices on each plate is available, the pressure difference across plate

m can be calculated by (refer to Eq. (11))

Dpm
i ¼ �

_vm
i

UR

þ 1þ vW
m
i þ vG

m
i

� �
cos am

i

_wm
i

UR

� wW
m
i � wG

m
i

� �
sin am

i

� �
gm

i

Ds
þ

1

UR

q
qt

Xi

j¼1

gm
j

 !
, (21)

and then Eq. (12) is used to calculate the fluid loads f L
m
i and f D

m
i acting on plate m. Note that, in Eq. (21), the

wake-induced flow velocity ðv;wÞW m
i should be calculated according to Eq. (20), and the flow velocity induced
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Fig. 3. Two identical cantilevered flexible plates aligned parallel to each other in axial flow with virtual spring connections.
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by the bound vortices on the other plate n, i.e., ðv;wÞGm
i , calculated by

ðv;wÞG
m
i ¼

XN

j¼1

gV
n
j

2p

ðyC
m
i � yV

n
j ;�xC

m
i þ xV

n
j Þ

ðyC
m
i � yV

n
j Þ

2
þ ðxC

m
i � xV

n
j Þ

2
, (22)

should also be considered.

2.3. Two-plate system: the in-phase model

Besides the original model developed for the two-plate system, an in-phase model is also considered. That is,
as shown in Fig. 3, two virtual spring connections are introduced, and the lift force acting on plate m, now
denoted as f L, should be calculated by

f L

m

i ¼ f L
m
i � kLðw

2 � w1 � dPÞdðs� s1SÞ � kLðw
2 � w1 � dPÞdðs� s2SÞ, (23)

where kL is the spring stiffness normalized by L4=D [3]; s1;2S are the spring locations normalized by L. Note
that, the ‘‘þ’’ sign is used when m ¼ 1; while, the ‘‘�’’ sign when m ¼ 2.

The consideration of the virtual spring connections is supposed to force the two plates to always oscillate in
phase. When they indeed oscillate in phase, the distance between the two plates everywhere along the whole
length of the plates is exactly dP, and w2 � w1 � dP � 0; that is, no spring force acts on the plates. The value of
the spring stiffness kL should be sufficiently large in order to avoid the springs influencing the dynamics of the
system. In the current investigation, kL ¼ 1:0� 106 is used; refer to the dynamics of the one-plate system with
an additional spring support studied in Ref. [3], where much smaller values of kL are considered. Moreover,
the number and location of the spring connections are determined by the dynamics of the corresponding
one-plate system: when the mass ratio m of the one-plate system is small, say mo0:6, the plate oscillates in the
second beam mode and a quasi-node can be observed at about three-quarters of the plate length; therefore, the
two virtual connections can be placed at s1S ¼ 1 and s2S ¼ 0:75.

3. The dynamics of the two-plate system

In the present paper, one is specifically interested in the in-phase and out-of-phase modes of the two-plate
system, and the parameters m ¼ 0:2, l0 ¼ 0:01,1 a ¼ 0:004 and CD ¼ 0 are uniformly used in the analysis, as
the dynamics of the one-plate system with the same parameters has been investigated extensively in Ref. [2],
and the influence of the parameters l0, a or CD on the dynamics has also been studied therein.

In particular, the flutter boundaries of the two-plate system, respectively, obtained using the original model
(without constraining springs) and the in-phase model (with springs), are presented in Fig. 4(a). It can be seen
1The parameter l0 ¼ 0:01 represents a basic case where the upstream clamping constraint effectively has no length. In practice, using

l0 ¼ 0:01 instead of l0 ¼ 0 in the present paper and Ref. [2] is a small trick for the purpose of avoiding the leading edge singularity in the

aerodynamic calculations involved.
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that the system oscillating in phase is always more stable than the system oscillating out of phase, as the
original model predicts a flutter boundary below the one obtained using the in-phase model. When dP is small,
the stability of the system depends on the separation distance of the two plates; the smaller the value of dP, the
more significant is its influence. On the other hand, when dP ¼ 5, no difference can found between the original
model and the in-phase model, as well as between the models of the two-plate system and the one-plate system,
in that all of them predict the same critical reduced flow velocity at URc ¼ 9:92. One can also see in Fig. 4(a)
that, as compared to the one-plate system, with decreasing values of dP, the two-plate system becomes
increasingly less stable when it oscillates in the out-of-phase mode; while, on the contrary, increasingly more
stable in the in-phase mode. It should be mentioned that the two plates oscillating out-of-phase can be viewed
as a case of a single plate in the presence of a ground plane, with the ground surface coinciding with the mid-
plane of the two plates, i.e., the y ¼ dP=2 plane; the other plate is just the mirror-image of the first one with
respect to the ground surface.2 With the ground effect, a larger aero/hydro-dynamic load (lift) can beexpected,
and the plate becomes less stable.

It should be emphasized that the spring connections considered in the in-phase model are virtual ones; no
spring forces act on the plates when the plate oscillates in-phase because the separation between the two plates
is always dP (the original length of the springs). Through extensive tests, it was found that in-phase solutions
cannot be obtained using the original model. Moreover, if while working with the in-phase model the virtual
spring connections are broken in the middle of the numerical simulation after a stable in-phase solution has
already been achieved, one finds that the dynamics of the two-plate system (in-phase oscillations) is altered
and finally converges to the dynamics obtained by using the original model (out-of-phase oscillations).
2Let us look at a one-plate system in association with a ground plane located at y ¼ dp=2. This new problem may be solved using a

distribution of vortex type singularities for the plate as well as the downstream wake. When taking into account the ground plane, each

individual vortex has its own mirror image with the ground plane as the mirror (i.e., the plane of symmetry). The distribution of these

mirrored vortices actually constitutes a mirrored plate and its own wake. Moreover, we need to solve the original and mirrored plates and

wakes simultaneously for the one-plate system with the presence of a ground plane, just as we did in the solution of the two-plate system.

The only difference is this: in the former problem we assume a priori that the original and mirrored plates oscillate in the out-of-phase

mode, while in the latter problem we know a posteriori that the two plates indeed oscillate out of phase. Therefore, the two problems are

actually identical and, when stable limit cycle oscillations have been well established (i.e., the solution of either the former or the latter

problem) the mutual aerodynamic influence between the original and mirrored plates in the former problem and that between the two

plates in the latter problem are exactly the same.



ARTICLE IN PRESS
L. Tang, M.P. Paı̈doussis / Journal of Sound and Vibration 323 (2009) 790–801 797
As shown in Fig. 4(b), two bifurcation diagrams are obtained using (i) the original model and (ii) the in-phase
model for the case dP ¼ 1. Because the spring connections considered are virtual ones, the in-phase model is
indeed identical to the original model when the two plates oscillate in-phase. Therefore, the two bifurcation
diagrams shown in Fig. 4(b) can be viewed as a combined one for the two-plate system. That is, the in-phase
state of the system is the unstable branch (denoted by the dashed-line), which cannot be predicted by the
original model, but which can nevertheless be captured with the aid of the virtual spring connections
(i.e., using the in-phase model). It should be mentioned that between the two critical points, respectively,
predicted by the original model and the in-phase model, the stretched-straight state of the two plates is also an
unstable branch. Therefore, the dynamics of the two-plate system can be divided into three regions as UR is
increased: (i) region I, involving only the stable flat state, (ii) region II, where a stable limit cycle and an
unstable flat state coexist, and (iii) region III, where stable and unstable limit cycle oscillations coexist.

Both the original and in-phase models have been studied with various initial conditions, either in-phase or
out-of-phase. With out-of-phase initial conditions, the virtual springs in the in-phase model become effective
and, after the transients have died out, in-phase oscillations result, as expected. On the other hand, without the
virtual springs, the original model always predicts out-of-phase oscillations, no matter what initial conditions
are used, as shown in Figs. 5(a) and (b) for dP ¼ 1 and UR ¼ 10. It is of interest to observe in Fig. 5(b) that the
two plates always oscillate out-of-phase if they are started with out-of-phase initial conditions. In contrast, as
shown in Fig. 5(a), when in-phase initial conditions are used, the phase relationship is gradually reorganized
and eventually out-of-phase oscillation results; a longer transient, as compared to the dynamics shown in
Fig. 5(b), can be observed in Fig. 5(a) due to this phase reorganization process.

The evolution of the phase relationship between the two plates can be seen more clearly in Fig. 6, in the case
of dP ¼ 3 and UR ¼ 9:9, obtained by means of the original model with in-phase initial conditions. Note that,
for dP ¼ 3, the critical points of the original and in-phase models are, respectively, URc ¼ 9:87 and 9.95. These
two critical points are very close to each other because the coupling between the two plates is attenuated as a
result of the large dP involved. Therefore, for the results of Fig. 6, the reduced flow velocity UR is close to the
τ

-0.3

0.0

0.3

w
1
(s

=1
)

0.70.7

1.0

1.3

w
2
(s

=1
)

τ

-0.3

0.0

0.3

w
1
(s

=1
)

0.7

1.0

1.3

w
2
(s

=1
)

0 18161412108642

0 18161412108642

Fig. 5. The time histories of the two-plate system with dP ¼ 1 obtained using the original model with (a) in-phase and (b) out-of-phase

initial conditions.



ARTICLE IN PRESS

0 1 2 3 4 5
τ

−0.01

0.00

0.01

w
1

(s
=1

)

2.99

3.00

3.01

w
2

(s
=1

)

(b) 

42 43 44 45 46 47 48 49 50 51 52 53 54
τ

−0.0002
−0.0001

0.0000
0.0001
0.0002

w
1

(s
=1

)

2.9994
2.9996
2.9998
3.0000
3.0002
3.0004
3.0006

w
2

(s
=1

)

(d)

145 146 147 148 149 150
τ

−0.0005

0.0000

0.0005
w

1
(s

=1
)

2.9995

3.0000

3.0005

w
2

(s
=1

)

(c) 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
τ

−0.0005

0.0000

0.0005
w

1
(s

=1
)

2.9995

3.0000

3.0005

w
2

(s
=1

)

(a)

Fig. 6. (a) The time history of the two-plate system with dP ¼ 3 obtained using the original model with in-phase initial conditions at

UR ¼ 9:9; and (b–d) various segments of the time history shown in (a).

L. Tang, M.P. Paı̈doussis / Journal of Sound and Vibration 323 (2009) 790–801798
critical point; as one can see in Fig. 6(a), there is a long transient, as expected. At the beginning, since in-phase
initial conditions have been used, the two plates oscillate in-phase with the same amplitude, as shown in
Fig. 6(b). Moreover, because UR ¼ 9:9 is below the in-phase critical point, the oscillation amplitudes of the
plates decrease. As time elapses, a phase difference between the two plates emerges and grows, as shown in
Fig. 6(d). During the process of phase reorganization, the oscillation amplitudes of the two plates are different.
Additionally, as the oscillation amplitude of one plate decreases with time that of the other one increases.
A close examination of Fig. 6(d) reveals that the transition from in-phase motions to out-of-phase motions is
not achieved at one stroke from 0 (in-phase) to p (out-of-phase) in terms of phase difference. For example,
a significant phase difference can be observed for 42oto43 and 53oto54, while the two plates oscillate
almost in-phase for 47oto48. Nevertheless, when a sufficiently long time has elapsed, the two plates at last
oscillate out of phase (a phase difference of p) with the same amplitude, as shown in Fig. 6(c). Finally, because
the current UR is larger than the out-of-phase critical point, the oscillation amplitudes of both plates grow
(note that the time histories of Fig. 6(a) show that the system is still in a transient state).

The post-critical dynamics of the two-plate system are studied in Fig. 7 for dP ¼ 1 and UR ¼ 10:95, where
both the original and in-phase models predict limit cycle oscillations (see Fig. 4(a) and region III in Fig. 4(b)).
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As one can observe in Figs. 7(a) and (b), the amplitude of the out-of-phase oscillations is larger than that of
the in-phase oscillations. This is because the value of the out-of-phase critical point is smaller than the in-phase
one, as shown in Figs. 4(a) and (b). When oscillating in phase, the dynamics of either of the two plates is
exactly the same, except that the transverse displacements of plate 2 have a constant part dP; and either plate
undergoes symmetrical oscillations with respect to its own neutral plane (i.e., the Y ¼ 0 plane for plate 1 or the
Y ¼ DP plane for plate 2). On the other hand, when the two plates oscillate out of phase, the dynamics of
either plate is the mirror image of the other one. However, as one can see in Figs. 7(a), (c) and (e), as well as
more clearly in Fig. 5(a), the oscillations of either plate are not symmetrical with respect to its own neutral
plane; a small buckling in the direction away from the other plate is superposed on the limit cycle oscillations.
Regardless of the difference discussed above, one can see in Fig. 7 that the dynamics of the two-plate system,
obtained with either the original or in-phase model, is qualitatively the same in terms of the time history,
flutter frequency and oscillation modes. Additionally, as compared to the one-plate system with the same
parameters (excepting dP) studied in Ref. [2], the dynamics of either of the two plates in Fig. 7 is qualitatively
the same.
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It is of interest to compare the results obtained by the present theory with previous experimental
observations of Zhang et al. [6] and theoretical predictions of Farnell et al. [7] for the ‘‘two-plate’’ system in
axial channel flow, where both in-phase (without the aid of virtual springs) and out-of-phase oscillations are
reported: as illustrated in Fig. 8, when the channel size and the flow velocity are fixed, in-phase oscillations
are observed when the separation between the two plates is small, while the two plates oscillate in the
out-of-phase mode as the separation exceeds a certain value; moreover, as the separation is increased further,
the two plates oscillate independently. A close examination of the two stability diagrams in Fig. 8 sketched
according to the information published by Zhang et al. [6] and Farnell et al. [7], one may exclude the case
shown in Fig. 8(b) because the two-plate system with fixed values of channel size and separation distance, is
unlikely to remain in the stretched-straight state at a higher flow velocity but flutter at a lower one. Therefore,
one can infer from Fig. 8(a) that the out-of-phase mode has a higher flutter threshold than the in-phase mode,
which is completely opposite to the results obtained in the present paper. The underlying mechanism of this
qualitative difference may be very complicated. However, a possible explanation is that, in the present paper,
the fluid flow is supposed to be inviscid and the two plates are in unconfined axial flow. In the experiments
conducted by Zhang et al. [6] and the theory of Farnell et al. [7] based on a Navier–Stokes solver, however,
both viscosity and confinement are naturally in place in the experiments or taken into account in the analytical
model. Moreover, the channel size is indeed small in the work of Zhang et al. [6] and Farnell et al. [7]; say, not
as large as 1 when normalized using the plate length, and the channel size is fixed when the separation distance
between the two plates is altered. Therefore, the viscosity of the fluid and the separation distance between the
two plates, as well as between each plate and either of the upper/lower channel walls, may well have a
profound and complex influence on the dynamics of the system.
4. Conclusions

The coupled dynamics of two cantilevered flexible plates aligned parallel to each other in open axial flow has
been studied in this paper. It has been found that the two-plate system can oscillate in both in-phase and
out-of-phase modes; and the in-phase modes are always more stable than the out-of-phase modes. When
the separation is sufficiently large, the coupling between the two plates diminishes, and each plate
oscillates independently like a one-plate system. As compared to the one-plate system, with decreasing
inter-plate separation, the two-plate system becomes increasingly less stable in the out-of-phase mode; while,
on the contrary, it becomes increasingly more stable in the in-phase mode. No matter whether the two plates
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oscillate out of phase or in phase, the oscillation modes of either plate are qualitatively the same as their
counterparts in the one-plate system. However, the plates undergo symmetrical oscillations with respect to the
flow axis when they oscillate in phase; while, when the two plates oscillate out of phase, the dynamics of either
plate is the mirror image of the other one; a buckling component in the direction away from the other plate
can be observed in association with the limit cycle oscillations.

The oscillations of the two plates in the out-of-phase mode can naturally be predicted through numerical
simulations; while those in the in-phase mode have to be obtained using artificial constraints (i.e., the virtual
spring connections) applied to the system. Using the original model and the in-phase model with the
virtual spring connections, it has been demonstrated that the dynamics of the two-plate system has two
branches: one is stable in the out-of-phase mode with a lower flutter threshold, and the other one is unstable in
the in-phase mode with a higher flutter threshold. Accordingly, the bifurcation diagram of a two-plate system
can be divided into three regions as the flow velocity is increased: (i) the stable stretched-straight state, (ii) the
region involving the coexistence of a stable limit cycle and an unstable stretched-straight state, and (iii) the
region of coexistence of a stable and an unstable limit cycle oscillations. To the authors’ best knowledge, this is
the first time that one can capture an unstable branch of dynamics through direct numerical simulations.
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